The solution of the Binet-Cauchy functional equation for square matrices
نویسندگان
چکیده
Heuvers, K.J. and D.S. Moak, The solution of the Binet-Cauchy functional equation for square matrices, Discrete Mathematics 88 (1991) 21-32. It is shown that if f : M,(K)+ K is a nonconstant solution of the Binet-Cauchy functional equation for A, B E M,,(K) and if f(E) = 0 where E is the n x n matrix with all entries l/n then f is given by f(A) = m(det A) where m is a multiplicative function on K. For f(E) # 0 it has been shown by Heuvers, Cummings and Bhaskara Rao, that f(A) = @(per A) where 9 is an isomorphism of K. Thus the Binet-Cauchy functional equation is the source of the common properties of det A and per A. The value of f(E) is sufficient to distinguish between the two functions.
منابع مشابه
Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملThe Binet-cauchy Theorem for the Hyperdeterminant of Boundary Format Multidimensional Matrices
The Binet-Cauchy Theorem states that if A and B are square matrices then det(A · B) = det(A) · det(B). The main result of this paper is a generalization of this theorem to multidimensional matrices A, B of boundary format (see definition 2.2), where the hyperdeterminant replaces the determinant (see the theorem (4.2) for the precise statement). The idea of the proof is quite simple, in fact we ...
متن کاملGeneralization of Some Determinantal Identities for Non-square Matrices Based on Radic’s Definition
In this paper, we focus on Radic’s definition for the determinant of non-square matrices. We develop some important properties of this determinant. We generalize several classical important determinant identities, including Dodgson’s condensation, Cauchy-Binet, and Trahan for non-square matrices. Also, we propose an efficient algorithm with Θ((mn)) time complexity for computing Radic’s determin...
متن کاملNon-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 88 شماره
صفحات -
تاریخ انتشار 1991